

Instrumentation for SAXS and WAXS

- the Xeuss

FERNÁNDEZ Manuel, PhD Physics Application Scientist at Xenocs

X-ray Instrumentation

- X-ray generation
 - Sealed Tubes, rotating anodes ...
 - Synchrotron
- SAXS geometries
 - Pinhole camera
- X-ray Optics and Collimation
 - Crystal monochromators
 - Mirrors
 - Multilayers
- Detectors
 - PIN-diode
 - Image Plate
 - Pixel Detectors
- Xeuss

Sealed tubes and rotating anodes

• Sealed (fixed anode) tube

Rotating anode

Energy spectrum

- Decelerating the e- from in a random way generate a continuous spectrum: "Bremstrahlung"
- o lonization of some outer edge electron from the target material: specific emission lines

Characterization of sub-micron objects using x-ray light - Pierre Panine - Nanotech2012

Synchrotron

Using macroscopic size magnetic field to periodically deflect the course of e"synchrotrons"

Highly brilliant source (6 to 12 orders magnitude larger than laboratory sources)

X-Ray Data Booklet. Center for X-Ray Optics, and Advanced Light Source. Lawrence Berkely National Laboratory.

Synchrotron

Monochromators

Perfect crystals

The Bragg's Law for diffraction

$$n\lambda = 2d\sin\theta$$

Effect of divergency in spectral purity

Monochromatization by double reflection

Monochromators

Multilayer mirrors

2d sinθ= $k\lambda$

Very small reflection angle

X-Ray Data Booklet. Center for X-Ray Optics, and Advanced Light Source. Lawrence Berkely National Laboratory.

Wavelength range

 $\lambda Cu = 1.5489 \text{ Å}$ $\lambda Mo = 0.7108 \text{ Å}$

Xenocs Optics

Focalizing collimation

Parallel beam collimation

Instrumentation for SAXS and WAXS

Collimation geometry

Collimation – Parallel beam Optics

Paraboloid of revolution

Instrumental Function

Beam size and sample thickness

Small-angle X-ray Scattering

Lab source and Kratky camera

- Compact geometry
 - Microfocused source
 - Multilayer monochromator/focusing-collimating mirror
 - Beam clean up by 2 down stream slits or Kratky block

- Loss of 98% *only* of the power of the source: Over x1000 improvement of the flux

Small angle x-ray scattering

Lab source and pinhole camera

- Intense rotating anode/microfocus sealed tube
- Crystal monochromator/collector
- Collimation by 3 sets of crossed slits
- Beam clean up by 2 down stream slit

- Loss of 99.99% of the power of the source
- RECENT PROGRESS IN SLITTING leads to increase x5 in flux

Small angle x-ray scattering

Synchrotron: the E.S.R.F. ID02 beamline

- Beam conditionning
- Choice of the source
 - ESRF: low divergence, high brilliance straight section: "High Beta section"
- Monochromator"heat load" remover
- High precision 1m long toroidal mirror, focal length 33m, image 1:1 of source, slope error < qq Å
- Collimation by 3 sets of crossed slits
- Beam clean up by 2 down stream slits

- Beamstop
- Required with an adapted size, monitoring of transmitted intensity

Scatterless Slits

Collimation

Clean-beam technology

Figure 1: Comparison of the background scattering close to the beamstopper between our previous setup and the scatterless slits. The images are ROIs taken on a Pilatus 100k detector (Dectris)

Collimation

Scatterless Slits

SAXS – WAXS – USAXS

Small-Wide- and Ultra-small- angle X-ray Scattering: Matter of distance

Figure 10: Schematic layout of a combined SAXS/WAXS setup. The SAXS configuration is the same as in Fig. 1 and to which an ideal WAXS detector is added.

SAXS/WAXS in a Xeuss 1.0 System

SAXS and WAXS non simultaneous

SAXS/WAXS in a Xeuss 2.0 System

Simultaneous SAXS/WAXS

Pilatus 100k-Xenocs **WAXS**

Pilatus 100-200-300k or 1M **SAXS**

GISAXS / Reflectometry

Simple Stage: reflection in horizontal

z : vertical translationx : lateral translationth : reflection tilt

GISAXS / Reflectometry

Horizontal Stage Vertical reflection

z : vertical translation

om: omega, reflection tilt

phi: vertiocal rotation

rx : fine tilt

ry: fine reflection tilt

z': manual vertical translation

Beamstops

WAXSIN WAXSOUT

bsz take_direct_beam

On-line Image Plate

CCD – Pixel Detector

Hybrid pixel detector

PIN-diode

Hybrid pixel Detector / Direct beam analysis

System details / operation and safety

System details / source and detectors

System details

Simultaneous SAXS/WAXS

Thank you for your attention!